If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+3n-45=0
a = 4; b = 3; c = -45;
Δ = b2-4ac
Δ = 32-4·4·(-45)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-27}{2*4}=\frac{-30}{8} =-3+3/4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+27}{2*4}=\frac{24}{8} =3 $
| (2x-3)(x+1)=3(2x-1) | | 2x-7=11-7x | | 9-12y=-33 | | -2y-2y=0 | | 16y-45-3=33y+y | | C+16=3x | | 5x-(10-3x)=14 | | (2x+25)+(2x-5)=180 | | 3(2x-4)+2=1 | | 25=4x-7x | | 8=q+9 | | 5x^-3x-2=0 | | 17=(14)+k | | 100=m+80 | | 108y-77+8=300+y | | 11x-3x=30+2x | | x/16=-50 | | x/2=8/10 | | 2(3x+2)-x=6 | | 17x-108+5x=-33+x | | ((8y+6)/2)=3y-4 | | 3x+7/4=6x+2/5 | | (D^2+K^2)x=0, | | 8÷t×t=4 | | 9x/5=2x-1/1 | | –3–y=7 | | -4(x-1)=4x+20 | | 8.7-2x=4x-(-4x-5.3) | | 6x(7+3)=126 | | 1.2(3−h)−6=−5h | | x^2+2x+10=45 | | -20c+4c+5c=20 |